
1

An Efficient Segmentation Algorithm for CAPTCHAs
with Line Cluttering and Character Warping

Shih-Yu Huang, Yeuan-Kuen Lee, Graeme Bell and Zhan-he Ou,
Department of Computer Science and Information Engineering

Ming Chuan University
5 Teh-Ming Rd., Gwei Shan District, Taoyuan Country 333, Taiwan

phone: 886-3-3507001 ext 3439
e-mail: syhuang@mcu.edu.tw

Abstract

A CAPTCHA is a test designed to distinguish computer programs from human
beings, in order to prevent the abuse of networked resources. Academic research into
CAPTCHAs includes designing friendly and secure CAPTCHA systems and
defeating existing CAPTCHA systems. Traditionally, defeating a CAPTCHA test
requires two procedures: segmentation and recognition. Recent research shows that
the problem of segmentation is much harder than recognition. In this paper, two new
segmentation techniques called projection and middle-axis point separation are
proposed for CAPTCHAs with line cluttering and character warping. Experimental
results show the proposed techniques can achieve segmentation rates of about 75%.

Keywords: CAPTCHA, segmentation, recognition, Turing Test.

2

I. Introduction

As the internet increases in terms of size and in terms of available services,
people gain more convenience, but also face new challenges. Free services on the
internet may be abused by automated computer programs (often referred to as scripts
or bots – here, we use bot). Such bots may be intended to broadcast junk emails, post
advertisements, or ask servers to respond at a very high frequency. All of these forms
of misuse will decrease the usefulness of internet services. To prevent such abuse, it is
very important to design automatic systems that can differentiate between legitimate
human users and unauthorized computer bots. The Completely Automated Public
Turing Test to tell Computers and Humans Apart (CAPTCHA) was created to address
these needs [1].

The purpose of a CAPTCHA is to distinguish between computer programs and
humans automatically, through a computer-based test. The typical CAPTCHA user
interface consists of two parts: a character image with noise, and an input textbox.
The CAPTCHA system will ask the user to type the characters shown in the image.
However, the CAPTCHA system may have warped the shape of the characters in the
image, and added some arcs or lines to confuse and prevent automated computer
recognition of the characters. Fig. 1 shows an example drawn from the MSN
CAPTCHA system (circa January 2008). Put simply, an automated bot cannot pass
such tests, as until recently there were no character recognition techniques that can
understand what these altered characters are. In contrast, humans generally have much
better natural abilities when faced with the task of character recognition in a noisy
environment, so humans can usually pass these tests correctly without great
inconvenience. For the example shown in Fig. 1, a human would be expected to type
the answer ‘D23Y6M9N’ very easily. Therefore if a user can correctly respond to this
kind of test, the system defended by the CAPTCHA will consider the user to be a real
human. Otherwise, the user may be considered to be an illegal program, and may be
denied access to the service.

Fig. 1. An example of the MSN CAPTCHA system (c. Jan 2008).

Academic research into CAPTCHAs takes the form of a friendly ‘arms race’,
with some researchers acting as ‘malicious users’ that try to attack and defeat the
latest CAPTCHA systems automatically, e.g. [2]-[5], while other researchers seek to
design new defensive CAPTCHA techniques in response to known or anticipated
attacks [6]-[10]. When designing defensive CAPTCHA techniques, a CAPTCHA
system designer should give consideration both to computer security and human-

3

friendliness. In practice, balancing these two needs in opposition to one another is
very difficult.

In considering the design principles of well-known CAPTCHA systems, we see
that many well-known websites such as MSN, Yahoo, Google, Badongo, RapidShare
and Youtube have been employing user interfaces similar to that of Fig. 1. Each
website employs different heuristics to prevent malicious users. Badongo uses colored
lines to clutter the image, and Youtube uses colored blocks; whereas RapidShare uses
smaller colored characters as image noise to increase security. MSN and Yahoo do
not use colored characters as noise. Instead, they use straight and curved lines as
image clutter to confuse the attacking program. Although the security of these
CAPTCHAs is increased by these heuristics, their human-friendliness is decreased.
Accordingly, many researchers are trying to find other useful principles which will
help human users to pass a CAPTCHA test more easily, while presenting new
difficulties to automated programs. These principles include techniques such as the
use of highly contrasting colors, or the use of fewer characters, to assist humans.

Turning now to the task of attacking CAPTCHAs. As mentioned in the previous
paragraphs, there are a wide variety of CAPTCHA systems. It is hard to attack all
CAPTCHA tests with a single type of segmentation algorithm. We assume that the
CAPTCHAs being attacked have the following characteristics: a single-color picture,
using warped characters, and straight or curved lines as image noise, to confuse the
attacking program. The MSN and Yahoo systems (c. Jan 2008) are representative of
this form of CAPTCHA, and are used as the basis for the main discussion in this
paper. We observe that the task of attacking CAPTCHAs typically involves two
procedures, segmentation and recognition. The segmentation procedure requires
identification of the correct positions for each character, while the recognition
procedure identifies which character is in each position. Recent research shows that
segmentation is a much more difficult problem than recognition [4]. This is because
machine learning algorithms can efficiently solve the recognition problem, but
currently there is no effective general algorithm to solve the segmentation problem. In
[5], Chellapilla and other researchers use an image opening and labeling technique to
design a segmentation algorithm. When image noise components and character
components have noticeably different widths, Chellapilla’s technique is able to
separate noise from characters effectively. However, when the difference in width is
not so noticeable, this algorithm will either be unable to eliminate noise, or it may
break the characters when attempting to remove image noise. In 2008, Yan and
Ahmad proposed a low-cost attack against a CAPTCHA designed by Microsoft. Their
technique can efficiently separate noise from characters within the Microsoft
CAPTCHA [12]. Nonetheless, its performance leaves room for improvement when
facing CAPTCHA images with large warped characters, and long curved lines. This
paper therefore proposes an efficient segmentation algorithm for attacking
CAPTCHAs that can cope with these new cases as well as other recent CAPTCHA
features. This paper introduces two new segmentation techniques, and outlines a new
algorithm, that together make novel and useful contributions in the field of
CAPTCHA analysis. The first of these techniques, projection, has also been recently
introduced in [11].

The rest of this paper is organized as follows. Section II analyzes characteristics
of CAPTCHAs with line cluttering and character warping. Section III illustrates
Chellapilla’s segmentation algorithm. Section IV presents the proposed segmentation
scheme, including the projection technique, and the middle-axis point separation

4

technique. Technical comparisons between the proposed technique and the algorithm
presented by Yan and Ahmad. [12] are also given in Section IV. Section V covers
experimental results. The paper’s conclusions and suggestions for future works are
presented in Section VI.

 II. Analysis of CAPTCHAs

Straight lines, curved lines, and warped characters are widely used as image noise in
CAPTCHA systems. MSN and Yahoo use these kinds of noise in their CAPTCHAs as
the main techniques for confusing segmentation algorithms. The key differences
between the two systems are that the MSN system uses more line noise than Yahoo’s
system, whereas Yahoo’s system uses a higher degree of character warping. Here, the
noisy lines are labeled as ‘clutter’. Careful observation suggests at least eight
properties that can be used to describe these clutter items. Here, the properties
considered are color, intersection with non-clutter characters, size, curvature, length,
width, relative position to a character, and angle. These properties allow
categorization of clutter into nine types, as shown in Fig. 2.

A. Clutter

Type 1: Clutter with background color color

Type 2: Non-intersecting clutter
of small size

Type 3: Non-intersecting clutter
with a straight shape

Type 4: Non-intersecting clutter
with a curved shape

Type 5: Intersecting clutter
with a short length

Type 6: Intersecting clutter
with a long length and thin width

Type 7: Intersecting clutter with
a long length and thick width,

positioned below or above the characters

Type 8: Horizontally -intersecting clutter
with a long length and thick width,

flanking characters

Type 9: Vertically-intersecting clutter with
a long length and thick width, flanking

characters

intersection size

curvature

length

width

position

angle

The same as the background color

The same
as the
foreground
color

Not intersecting
with characters

Intersecting
with
characters

Small

Big

Straight

Curved

Short

Long
Thin

Thick

Below/above

Flank

Horizontal

Vertical

Fig. 2: A categorization of nine different types of clutter.

Type 1: Clutter with background color. Clutter items in the MSN system can be
divided into two groups by color. The first group consists of the clutter items drawn in
the foreground color, whereas the second group is those drawn with the background
color. When clutter items with the background color intersect the foreground
characters, the characters will appear to be broken into separate pieces, as shown in

5

Fig. 3(a). Humans usually see these separated character fragments as a single
character because of the shape constancy ability of the human visual system.
However, a computer cannot identify these separated parts as a single character
without some automated process for doing so. The second group of clutter items are
those with the foreground color. This group of clutter items is now further subdivided,
as follows.

Type 2: Non-intersecting clutter of small size. Type 2 clutter items have a small
size and do not intersect with any characters, as shown in Fig. 3(b). They do not
present a significant problem for attacking programs using existing techniques.

Type 3: Non-intersecting clutter with a straight shape. When a clutter item has an
approximately straight shape, does not intersect other characters, and has a size
similar to normal characters, it is classified as type 3, shown in Fig. 3(c).

Type 4: Non-intersecting clutter with a curved shape. This type of clutter item is
similar to type 3, in that it does not intersect with other characters and has a character-
like size, but it is not straight, as shown in Fig. 3(d).

Type 5: Intersecting clutter with a short length. In practice, this type of clutter
item has only a minimal impact upon the success rate of existing segmentation
techniques. It is shown in Fig. 3(e).

Type 6: Intersecting clutter with a long length and thin width. Regardless of
width, when a clutter item has a long length, it may affect character detection; and
worse, it may connect together several characters into a single item, in the view of a
segmentation algorithm. These situations may cause segmentation algorithms to fail to
identify characters successfully. However, long and thin clutter items can usually be
deleted by the image opening process detailed in [4]. Examples of type 6 are shown in
Fig. 3(f). The remaining problem is therefore detection/removal of thick clutter items.

Type 7: Intersecting clutter with a long length and thick width, positioned below
or above the characters. Type 7 is a form of thick clutter item where the position of
the clutter is mostly below or above some characters, as shown in Fig. 3(g).

Type 8: Horizontally-intersecting clutter with a long length and thick width,
flanking characters. This is a second form of thick clutter, consisting of horizontal
clutter items whose position is to the left or right side of the characters, as shown in
Fig. 3(h). The long length of this type of clutter means that it can connect several
different characters easily.

Type 9: Vertically-intersecting clutter with a long length and thick width,
flanking characters. This is the last type of thick clutter item addressed in this paper.
Where the type 9 clutter item is very close to the characters and is totally vertical, it is
unlikely to influence the segmentation process, shown in Fig. 3(i).

(a) Type 1: Clutter with background color. (b) Type 2: Non-intersecting clutter of small size.

6

(c) Type 3: Non-intersecting clutter with
a straight shape.

(d) Type 4: Non-intersecting clutter with a
curved shape.

(e) Type 5: Intersecting clutter with a short length. (f) Type 6: Intersecting clutter with a long length
and thin width.

(g) Type 7: Intersecting clutter with a long length
and thick width, below/above the characters.

(h) Type 8: Horizontally-intersecting clutter with a
long length and thick width, to the side of a

character.

(i) Type 9: Vertically-intersecting clutter with a long length and thick width, to the side of a character.
Fig. 3: Examples of nine types of clutter.

B. Character warping

Two forms of character warping are commonly employed in CAPTCHAs: global
warping and local warping. Global warping is a character-level deformation. After the
global warping method has been applied, the whole character is distorted, so that it is
not recognized by character template matching algorithms. Fig. 4 shows an example
of global warping. Fig.4(a) is the original character, and Fig. 4(b) is Fig. 4(a) after a
global warping process has been applied. Unlike global warping, local warping is
based on generating partial distortions across a character. The character does not
possess a single general change after the local warping. Instead, it has many irregular
ripples and waves that prevent character recognition by feature-based algorithms. An
example is shown in Fig. 4(c).

(a) Original character. (b) Global warping. (c) Local warping.
Fig. 4: Examples of character warping.

7

Warping methods do not significantly increase the security of a CAPTCHA by
themselves, as there are techniques to address different forms of warping approach.
However, warping does present many difficult problems for attacks on CAPTCHAs
when combined with a cluttering method. For example, when clutter lies between two
warped characters, it becomes much harder to find it and remove it.

III. Chellapilla’s Algorithm

In [4], Chellapilla et al. describe why the major problem in defeating CAPTCHAs
lies in the task of segmenting the characters in the image. The paper also proposes an
algorithm to segment images produced by several kinds of CAPTCHA systems. The
algorithm design includes three phases - preprocessing, image opening, and labeling -
in order to defeat CAPTCHA systems with line clutter and character warping. A
behavior diagram is shown in Fig. 5.

Fig. 5: Behavior diagram for Chellapilla’s CAPTCHA segmentation algorithm.

The preprocessing phase involves thresholding and up-sampling. Initially, any
grayscale in the original image is converted, so that it becomes a black and white
image. Afterwards, the image is enlarged. Next, image opening is the key step that
allows later segmentation of the characters in CAPTCHA images. In this phase, the
preprocessed image will go through an erosion process several times and will then
be dilated several times. Erosion will erase the character borders one pixel per time
irreversibly, whereas dilation will increase the border size one pixel per time. Notice
that these operations do not ‘cancel each other out’, as thin items will be removed
completely and will not reappear after dilation. In terms of CAPTCHAs, we see that
thin clutter items are deleted by the erosion process, so that they no longer appear
following the dilation process. Therefore, some items of clutter have been deleted.
Next, the labeling phase finds all of the connected components in the image, and
considers the largest ones to be characters. Since this final phase only outputs the
largest discrete items in the image as its result, any small isolated components will
be considered to be clutter or noise, and will be eliminated in this phase.

This algorithm is useful whenever clutter items are of thinner width than
characters - in other words, this helps to remove any type 6 clutter items. Fig. 6 shows
a successful example of this technique. However, when the width of the clutter items
is similar to the width of the characters, this algorithm produces errors. Since the
algorithm cannot recognize the difference between characters and clutter items of
similar width, it may categorize the clutter items as character data. Consequently the
clutter items will not be deleted. An example is shown in Fig. 7(a) and Fig. 7(b),
where ‘S’ and ‘8’ are still connected, and ‘G’ and ‘H’ have a similar problem.
Another possible problem occurs when the algorithm mistakenly identifies characters
(or parts of characters) as being clutter items, and removes all or part of some

Original
CAPTCHA

image

Phase 1:
Preprocessing

Phase 2:
Image opening

Phase 3:
Labeling

8

characters. An example is shown in Fig. 7(c) and Fig. 7(d), where ‘5’ is split into two
components.

(a) Original image.

(b) The final result.
Fig. 6: Example showing Chellapilla’s algorithm operating

successfully.

(a) Original image. (c) Original image.

(b) Some clutter items cannot be erased. (d) Some characters become broken.

Fig. 7: Examples showing some problems with Chellapilla’s algorithm.

 IV. Proposed Segmentation Algorithm

Chellapilla et al. gave the research community an effective way to address the
recognition problem, but their segmentation algorithm does not represent a complete
solution. This paper will therefore now propose two novel techniques - projection and
middle-axis point separation - that are intended to improve the success rate of
segmentation, and which yield a more effective segmentation algorithm.

A. Projection.
The projection technique in this paper is based upon the idea of projecting the

image data onto the X-axis. In practice, this is implemented by summing the number
of pixels in each column of the Y-axis of the image. This technique addresses
problems caused by type 3, type 8 and type 9 clutter items. Fig. 8(a) shows an
example of a type 3 clutter item. Type 3 clutter items are those which do not intersect

9

with other characters, and which are a connected component by themselves, so it is
possible to use the characteristics of these components to separate them from real
characters. Notice that the projections of these clutter items onto the X-axis appear
smaller and flatter than a normal character’s projection onto the X-axis. This is shown
in Fig. 8(b). The projection in the X-axis will tend to appear large and unstable, when
a component represents a character rather than an item of clutter. This is shown in Fig.
9(a) and Fig. 9(b). Therefore, by computing a component’s projection value and its
variance, it is possible to differentiate between components that are clutter, and
components that are characters.

(a) Original image.

(b) The projection in the X-axis for the
highlighted component.

Fig. 8: Type 3 clutter and its projection.

(a) Original image.

(b) The projection in the X-axis for the
highlighted component.

Fig. 9: A character and its projection.

Type 8 clutter items intersect characters and form part of a larger component,
shown in Fig. 10(a). This type of clutter also has a smooth and small appearance when
projected into the X-axis, as shown in Fig. 10(b). Therefore, it is possible to use the
projection technique to find out the position of the clutter items within a large
component, making it more straightforward to clean up the component. When two or
more characters are connected by this form of clutter, they can be effectively split up
by deleting these clutter items.

10

This paper uses a sliding window approach to detect type 8 clutter, because this
type of clutter has a smaller projection size than a normal character over a small part
of the image. In other words, the X-axis projection value of these clutter items will be
smaller than some threshold for a part of the image, so it is possible to use a sliding
window to check the projection value continually. When all the projection values
within the sliding window are smaller than the threshold, the algorithm marks the
position as containing a type 8 clutter item, so that it may be erased.

(a) An example of type 8 clutter.

(b) Projection image, sliding window and threshold.
Fig. 10: Type 8 clutter and its projection image.

Fig. 11 gives an example of the operation of the sliding window approach with
type 8 clutter. Suppose the width of the sliding window is 5, and the threshold is also
5. When the sliding window moves to the edge of the ‘E’ and the ‘5’, the projection
values in the sliding window are not all smaller than the threshold, so no action will
be taken at this position, shown in Fig. 11(b). When the sliding window moves to the
edge of the ‘5’ and the ‘K’, all of the X-axis projection values are smaller than the
threshold, so the algorithm will mark this place as containing a type 8 clutter item, and
clean it from the image. After the cleaning process, the connection between the ‘5’
and the ‘K’ characters has been removed, and so these characters are split into
separate components.

(a) Original image.

11

(b) Sliding window between the edge of the
 ‘E’ and the ‘5’.

(c) Sliding window between the edge of the
 ‘5’and the ‘K’.

(d) Segmentation result.

Fig. 11: An example of the sliding window technique with type 8 clutter.

The performance of the proposed sliding window approach is strongly dependant
on the value of the threshold, denoted as T, and the size of the sliding window,
denoted as S. A smaller value of T results in difficulty when erasing items of clutter.
In contrast, clutter items can be easily erased when T has a larger value. However,
some characters could become damaged by an excessive amount of erasure. Variation
in the size of the sliding window produces similar phenomena. Type 8 clutter is easily
erased when S has a small value. However, some characters with thin strokes are also
broken. In contrast, clutter can not be detected when S has a large value.

Every CAPTCHA image may have some variation in its clutter item size and
inter-character white space size, so it may not be appropriate to always use fixed
values for T and S. To address this challenge, an adaptive heuristic was developed to
set values for T and S, according to the content of each CAPTCHA image. An ideal
value for T is of course equal to the height of clutter items in the image. Here, the
height of clutter items throughout the image was found to be usefully approximated
by the mode of the projection height values for type 3 clutter. We calculate this as
follows. After the initial phase of labeling, type 3 clutter items become distinct easily-
recognized components. We project these components individually and calculate the
most commonly occurring projection height value within them. We use this value as
the value for T within the sliding window approach. Similarly, a reasonable value for
S would be the normal size of white space gap between adjacent characters in the
image. After the labeling phase, we have a number of distinct components. The size of
the white space between these distinct components was found to give a useful
indication of the size of white space between characters within each component. We
can therefore provide a unique value for S for each image following the labeling
phase, by calculating the mean size in pixels of the white space gap between
components.

Of course, not all labeled components require the use of the sliding window
approach - it is only intended to erase type 8 clutters from components with two or
more characters. This approach is therefore only activated when the width of a
component (in pixels) is larger than twice the width of the smallest single component

12

found in the image. This heuristic was chosen following early experimentation and
was found to be very effective.

Finally, we observe that the projection values of some characters, such as ‘0’,
‘O’, ‘D’, ‘8’, or ‘B’, can be smaller than the threshold continually over a region of the
image, depending on the value T chosen for the threshold. For example, in Fig. 12(a),
the projection values of the character ‘D’ are smaller than the threshold, resulting in
this character being damaged by the decisions made by the projection method.
Fortunately, these characters have a useful property – they have closed regions within
them, containing the background color. This property can be utilized to avoid
damaging the character by mistake.

(c) Sliding window, with the X-axis projection for the highlighted component.
Fig. 12: An example of an error during the projection technique.

B. Middle-axis point separation
Some clutter items may not be erased by using the projection technique. Fig. 13

shows an example of two characters which cannot be split by the projection
technique. Since these two characters are too close to allow the sliding window
projection value to lie below the threshold throughout the entire window, they can not
be separated by the sliding window projection technique. Although the projection
value does not help with the task of deleting these clutter items, it is still possible to
observe the existence of clutter items because of the unusual component length.

In the CAPTCHA systems being studied, characters will never overlap with each
other, so it is possible to use the spaces between them (which are in the background
color - here, white) to separate the characters. This paper therefore utilizes this
property and proposes another technique named middle-axis point separation to clean
up the remaining clutter, or at least reduce its ability to affect the characters. The
middle-axis points are the white background pixels lying centrally between two
disconnected black foreground pixels, determined around the Y-axis. These points
will be connected together to form several candidate cutting lines in different places,
shown in Fig. 14(b). Fig. 14(c) shows a set of correct cutting lines determined a-priori
and manually – the algorithm should produce output close to this ideal set of cutting
lines.

13

(a) Original image with overlapping characters.

(b) The x-axis projection of the image.
Fig. 13: An example of projection failing.

(a) Original image. (b) Candidate cutting lines.

(c) Correct cutting lines (marked with arrows).
Fig. 14: An example of middle-axis point separation.

To find these cutting lines, the algorithm must estimate how many characters are
in the component, in order to decide how many cutting lines are needed. A simple
solution to this first problem is to statistically analyze character groups to determine
the typical component length. The length of a component is measured in terms of
pixels along its corresponding projection. In Table 1 below, calculations have been
made for 100 MSN and 100 Yahoo CAPTCHA images, giving the statistics
associated with different numbers of characters.

Table 1: The relationship between the number of characters in a component, and the
typical component length.

Yahoo MSN

Number of
characters

Average
length

(pixels)

Minimum/Maximum
length (pixels)

Average
length

(pixels)

Minimum/Maximum
length (pixels)

One character 29.07 8~50 24.06 7~42

Two characters 60.71 43~85 46.27 38~59

14

Three
characters 98.25 91~126 64.76 55~79

Using Table 1, it is possible to guess the number of characters in a component.
For example, in the Yahoo CAPTCHA system, the longest length of a component
with one character is 50 pixels, and the shortest length of a component with two
characters is 43 pixels. An estimation may be made that (50+43)/2 = 46.5 pixels
should represent a suitable threshold for heuristic determination that a component has
only one character. In the same way, a heuristic threshold can be assigned for
components with two characters, as (85+91)/2 = 88. Therefore, when the length of a
component is between 46.5 and 88 pixels long, the algorithm will regard the
component as most likely consisting of two characters. The algorithm considers a
component to consist of three characters, if its length is more than 88 pixels.
Similarly, in the MSN CAPTCHA system, thresholds can be determined as 40 and 57
pixels respectively. These measurements must be determined for any other
CAPTCHA system that is being attacked with this technique.

For example, in the Yahoo CAPTCHA image shown in Fig. 15(a), the selected
component has a length of 126 pixels. Since 126 > 88, the algorithm treats it as having
3 characters and therefore requiring 2 sets of cutting lines to separate the 3 characters.
If a candidate cutting line lies close to an average-case boundary position, such as
(126/3 = 42) or (126*2/3 = 84), it is more likely to represent a correct cutting line.
Fig. 15(b) gives a single complete cutting line located close to pixel 42.

Notice that an ideal cutting line may be interrupted by a horizontal clutter item or
horizontal part of a nearby distorted character in practice. Therefore, if two cutting
lines are excellent candidates, and if their orientation is vertical, and at similar x-axis
positions, it is likely that both lines are necessary cutting lines, and they should be
connected. This overcomes the case where an ideal cutting line is interrupted by a
horizontal component such as a clutter item. Fig. 15(c) shows a set of cutting lines
placed close to pixel 84. Using these cutting lines, we can split the component into
different parts, as shown in Fig. 16.

(a) An example
component.

(b) A single complete
cutting line. (c) A pair of cutting lines.

Fig. 15: An example of middle-axis point separation.

Fig. 16: The segmentation result for middle-axis point separation. The right hand
boundary of the ‘X’ character is determined from two cutting lines separated by a

horizontal component, whereas the left boundary is a complete cutting line

C. Proposed CAPTCHA segmentation algorithm.

15

This paper now proposes a segmentation algorithm for CAPTCHAs with line
cluttering and character warping. This algorithm is based on Chellapillas et al.’s
algorithm and has five phases: Preprocessing, Image Opening, Labeling, Component
Splitting and Character Extracting. A behavior diagram is shown in Fig. 17.

Fig. 17: Behavior diagram for the proposed CAPTCHA segmentation algorithm.

The algorithm proposed here is based upon Chellapillas et al.’s algorithm, and
has a similar process for the first three phases. An important difference appears in the
preprocessing phase. To prevent the mistake highlighted earlier, when the projection
technique fails to operate with ‘0’, ‘O’, ‘D’, ‘8’ and ‘B’, the algorithm will detect
closed regions in the preprocessing phase. It begins by computing all of the
background-colored connected components first. The background-colored connected
components which do not belong to a closed region are combined together, and
become the largest connected background-colored component in the picture. The
algorithm marks the connected background-colored components that are smaller than
this largest component, as closed regions, which will not be considered by the sliding
window technique later in segmentation. A simple example is shown in Fig. 18.

Fig. 18: Closed regions identified during preprocessing.

The second and third phases are image opening and labeling, respectively, as per
Chellapilla’s algorithm. The fourth phase, the component splitting phase, includes the
proposed projection and middle-axis point separation techniques. The components
that are not already fully separated can be separated by these techniques, since image
opening will have erased the thin clutter items of type 6, and projection can solve
problems caused by type 3, type 8 and type 9 clutter items. Any component which
cannot be separated by these earlier operations, will then be split by middle-axis point
separation.

After all of these phases are complete, the original image will have become
separated into many different connected components. In Fig. 19, different shading
highlights each of the different connected components that were identified. In this
example, the MSN CAPTCHA has only 8 characters, but the image is broken into 15
discrete connected components. In the final phase, the character extracting phase, the
algorithm deletes redundant components, and outputs the location of the characters. It
is known that genuine character components have the biggest and most highly

Phase 4:
Component

Splitting

Phase 5:
Character
Extracting

Original
CAPTCHA

Image

Phase 1:
Preprocessing

Phase 2:
Image

Opening

Phase 3:
Labeling

16

variable projection values in the X-axis, so the algorithm now erases any components
which have small and almost flat projections, as well as type 2 clutter items. The
remaining components are sorted by their size; and the algorithm outputs the largest 8
components (for MSN-type CAPTCHAs), or the largest 6 components (for Yahoo-
type CAPTCHAs, which typically have 5-6 components). However, if two characters
are identified near the same horizontal position, the character with the largest area is
kept, and the character with the smallest area is discarded. In Fig. 19(b), this would
cause the large clutter item above the letter ‘G’ to be automatically discarded.

(a) Original image. (b) Image after the fourth phase.
Fig. 19: An example showing different connected components.

D. Comparisons between the proposed algorithm and Yan’s algorithm.
In 2008, Yan and Ahmad proposed a low-cost attack on a CAPTCHA designed

by Microsoft. Yan’s algorithm includes seven phases: binarization, fixing broken
characters, vertical segmentation, color filling segmentation, thick arc removal,
locating connected characters, and segment connected characters. The initial two
phases of Yan’s algorithm and this paper’s algorithm are quite similar. Binarization,
i.e. conversion of the original image into a black and white version, is similar to the
preprocessing phase of the proposed algorithm. Fixing broken characters is similar to
the proposed image opening phase, i.e. its purpose is to connect any damaged
characters caused by type 1 clutter items.

The goals and principles of the third, fourth, and fifth phases of Yan’s algorithm
are also similar to the third and fourth phases of the proposed algorithm. They all
utilize projection information to segment CAPTCHA images and remove clutter. In
Yan’s algorithm, a CAPTCHA image is divided into multiple chunks if there are zero
valued projections during the vertical segmentation phase. Fig. 20(a) of this paper
shows an example where two chunks are obtained. Next, the connected components
of every chunk are extracted by the color filling segmentation phase (this corresponds
to the proposed labeling phase of this paper). Fig. 20(b) shows the corresponding
connected components produced in this paper’s example. Finally, the thick arc
removal phase utilizes four properties of clutter items: pixel count, location, shape,
and interplay between shape and location, in order to remove thick clutter. Fig. 20(c)
shows the results after the fifth phase of Yan’s algorithm, where ‘R’ and ‘E’ are still
connected.

Clearly, there are some high-level similarities between Yan’s algorithm and this
paper’s proposed algorithm, but the detail of each algorithm is different, resulting in
quite different performance. A significant difference is the running order of the
projection and labeling phases. In this paper’s proposed algorithm, labeling is
performed before projection. The benefit of this approach is that a CAPTCHA image
can be quickly segmented into many small components. Reusing the earlier example,
Fig. 20 (d) shows the results of labeling, where the CAPTCHA image is segmented

17

into 10 components. Projection is then performed for every component. Type 3 clutter
items can be easily removed by the proposed properties of projection. Type 8 clutter
items can be extracted by the proposed sliding window approach. Fig. 20 (e) gives the
corresponding results for the previous example, where ‘R’ and ‘E’ are extracted
separately.

(a) Results of the vertical segmentation phase of Yan’s algorithm.

(b) Results of the color filling segmentation phase in Yan’s algorithm.

(c) Results of the thick arc removal phase in Yan’s algorithm.

(d) Results of the labeling phase of the proposed algorithm.

(e) Results of the projection phase of the proposed algorithm.

Fig. 20: An example comparing Yan’s algorithm and the proposed algorithm.

The last two phases of Yan’s algorithm are: locating connected characters, and
segment connected characters. They share similarities with the proposed middle-axis
point separation and character extracting techniques of this paper. Both approaches
utilize statistical data about the number of chunks, the width of each chunk, and the

18

number of objects in each chunk, in order to guess which chunk contains connected
characters and also the number of characters present. The major difference between
them is that an ‘even cut’ approach is employed in Yan’s algorithm to reduce the
computational cost; whereas a more sophisticated ‘middle point cut’ is utilized in the
proposed algorithm to improve the accuracy of segmentation. Fig. 21(a) shows an
example of the results of the Yan’s algorithm, where ‘3’, ‘X’, ‘H’, ‘V’, and ‘8’ are left
in a single chunk as there is no zero projection value position between them. ‘Even
cut’ fails in this case. However, these characters are correctly extracted by the
proposed algorithm of this paper, as shown in Fig. 21(b), where ‘3XH’ and ‘V8’ are
already separated by the proposed sliding window approach.

(a) Failure of segmentation resulting from Yan’s algorithm.

(b) Successful segmentation produced by the proposed algorithm.

Fig. 21: A second example comparing Yan’s algorithm and the proposed algorithm.

V. Experimental Results

In this section, experimental results are presented for Chellapilla’s algorithm, and
the proposed algorithm. These algorithms were applied to sample images from the
MSN and Yahoo CAPTCHA systems collected during 2007. 100 MSN and 100
Yahoo CAPTCHA images were tested for each system, with 800 characters in the
MSN CAPTCHAs and 525 characters in the Yahoo CAPTCHAs. Two kinds of
segmentation rate, SRA and SRB, are used here to demonstrate the performance of
these algorithms. SRA is the segmentation rate based upon the numbers of characters
in each of the different images. For example, if an algorithm can segment 600
characters from 100 images of MSN CAPTCHAs, the segmentation rate will be
600/800 = 0.75, or 75%. SRB is the segmentation rate in terms of the number of
images whose characters were all correctly segmented. SRB rises only when every
character in a complete image is fully and correctly segmented.

We first analyze the effect of the proposed adaptive mechanism for setting T and
S in the proposed algorithm. For comparison, we also implement the algorithm with
fixed T and S, where T and S range from 1 pixel to 7 pixels. Table 2 shows the SRA
results of the algorithm with fixed T and S and adaptive T and S. For the algorithm

19

with fixed T and S, the optimal SRA is 77.88% when T=3 and S=3 in MSN images
and the optimal SRA is 80.57% when T=4 and S=7 in Yahoo images. The
segmentation rates are poorer when the algorithm uses a larger T and/or a smaller S
since many characters are damaged in that case. It appears that the effect of T is more
important than that of S. Once the value of T is correctly set, the segmentation rates
are acceptable even with a poor value of S. For the example of T=3 with MSN images,
all of the SRAs resulting from different values of S are higher than 73.75%. However,
when the value of T isn’t properly set, the SRAs are likely to be terrible. For example,
when T=7 in MSN and Yahoo images, the SRAs are sometimes as low as 42.13% and
52.57% respectively for MSN and Yahoo images. This indicates that it is difficult to
set fixed values of T and S for all CAPTCHA images. This problem is solved here by
the proposed adaptive T and S mechanism. The SRAs of the adaptive algorithm are
76.00% and 79.05% for MSN and Yahoo images, respectively. These success rates
are quite similar to the optimal results obtained by the algorithm with fixed T and S.
Fig. 22 shows the details of the T and S settings as the algorithm executes. The
average values of T and S under the adaptive mechanism are 3.7 and 3.14 in MSN
images, and 4.47 and 6.18 in Yahoo images. Again, this is near to the optimal values
that were discovered by testing the algorithm with fixed T and S.

Table 2: SRA results for the proposed algorithm with fixed T and S and adaptive T
and S.
(a) MSN images

Fixed T and S

S=1 S=2 S=3 S=4 S=5 S=6 S=7
Adaptive
T and S

T=1 70.38% 70.13% 70.00% 70.00% 70.00% 70.00% 70.00%

T=2 75.00% 74.25% 74.13% 72.38% 71.38% 71.25% 70.88%

T=3 73.75% 76.50% 77.88% 77.38% 75.38% 75.13% 74.38%

T=4 64.38% 69.13% 73.25% 75.88% 75.25% 76.13% 76.00%

T=5 57.50% 63.00% 68.50% 71.88% 72.75% 73.50% 73.38%

T=6 50.00% 56.63% 62.63% 65.13% 69.75% 70.88% 72.13%

T=7 42.13% 50.13% 55.00% 61.13% 64.63% 65.50% 67.63%

76.00%

(b) Yahoo images
Fixed T and S

S=1 S=2 S=3 S=4 S=5 S=6 S=7
Adaptive
T and S

T=1 77.33% 77.33% 77.33% 77.33% 77.33% 77.33% 77.33%

T=2 77.33% 77.33% 77.33% 77.33% 77.33% 77.33% 77.33%

T=3 77.33% 78.10% 79.05% 78.29% 78.48% 78.29% 78.10%

T=4 71.81% 75.43% 78.48% 78.67% 79.24% 80.19% 80.57%

T=5 64.38% 69.33% 73.14% 75.43% 78.29% 79.81% 80.38%

T=6 58.10% 64.57% 67.62% 69.52% 74.48% 75.62% 76.95%

T=7 52.57% 57.52% 63.24% 65.52% 70.10% 72.38% 74.67%

79.05%

20

(a) Variation in T and S during execution of the adaptive method with MSN images.

(b) Variation in T and S during execution of the adaptive method with Yahoo images.

Fig. 22. Variation in T and S during execution with the adaptive mechanism proposed
for this paper’s algorithm.

This paragraph now compares the results from the proposed algorithm against
those from Chellapilla’s algorithm. In order to isolate and examine the effects of the
proposed projection heuristic, a ‘projection-only’ algorithm was also implemented by
disabling the middle-axis point separation phase. Table 3 shows the SRA and SRB
results. The SRA results for the projection-only algorithm were higher than
Chellapilla’s algorithm by 6.48% for the Yahoo CAPTCHA system. Similarly, when
attacking the MSN CAPTCHA system, the algorithm yields a 14% higher SRA result.
For the SRB results, the projection-only algorithm’s results were also higher than
Chellapilla’s algorithm’s results by 6% and 9% for the Yahoo and MSN CAPTCHA
system, respectively. Fig. 23 shows a set of examples demonstrating behavior for both
Chellapilla’s algorithm and the projection-only algorithm. In the Yahoo CAPTCHA in
Fig. 23, Chellapilla’s algorithm leaves a component which is made from clutter items,
whereas the projection-only algorithm in this paper totally separates all the characters
without leaving any clutter. In the MSN CAPTCHA in Fig. 23, Chellapilla’s
algorithm cannot split the ‘5’ and the ‘K’, and leaves many items of clutter, but the
projection-only algorithm can separate the ‘5’ and the ‘K’ and can also remove most
of the clutter items.

21

Finally, the results shown in Table 3 indicate the performance of the complete
proposed algorithm which includes projection and middle-axis point separation. It was
found that the segmentation rate is further increased by middle-axis point separation.
With Yahoo CAPTCHAs, the SRA increased to 79.05%, compared against 67.50%
for the projection-only algorithm. With MSN CAPTCHAs, the SRA increased to
76.00%, compared to 55.13% for the projection-only algorithm. For the SRB results,
the complete proposed algorithm’s results were also higher than the projection-only
algorithm’s results by 11% and 6% for the Yahoo and MSN CAPTCHA system,
respectively. The degree to which segmentation is improved is much higher with
MSN CAPTCHAs than Yahoo CAPTCHAs. This is because of the amount of clutter
items in the image. The MSN CAPTCHA system uses more clutter items than the
Yahoo CAPTCHA system. Many of the components in the MSN CAPTCHA system
cannot be separated by Chellapilla’s algorithm or the projection technique, but the
middle-axis point separation technique can overcome this difficulty effectively. Fig.
24 gives an example of the behavior of the complete algorithm; components which
cannot be separated by the projection technique - such as ‘3’, ‘X’, and ‘H’ in the
Yahoo CAPTCHA, and ‘R’, ‘U’ ‘S’ and ‘8’ in the MSN CAPTCHA - can be
separated successfully by middle axis point separation.

Table 3: Segmentation rates, SRA and SRB, for the proposed algorithms and
Chellapilla’s algorithm.
(a) SRA results

Yahoo MSN

Chellapilla’s algorithm 60.57% 41.13%

Projection-only algorithm 67.05% 55.13%

Final algorithm 79.05% 76.00%

(b) SRB results

Yahoo MSN

Chellapilla’s algorithm 28.00% 3.00%
Projection-only algorithm 34.00% 12.00%
Final algorithm 45.00% 18.00%

(a) Original Yahoo image. (d) Original MSN image.

22

(b) Chellapilla’s algorithm. (e) Chellapilla’s algorithm.

(c) Projection-only result. (f) Projection-only result.

Fig. 23: Algorithm results for two different types of CAPTCHA.

23

(a) Original Yahoo image. (d) Original MSN image.

(b) Projection result. (e) Projection result.

(c) Complete algorithm result. (f.) Complete algorithm result.

Fig. 24: Complete algorithm results for two different CAPTCHA systems.

 VI. Conclusions and Future Works
In this paper, an effective novel algorithm was proposed for the segmentation of

MSN and Yahoo CAPTCHA images containing line cluttering and character warping.
The novel algorithm uses projection and middle-axis point separation, two new
techniques which are proven to be effective against these CAPTCHAs. In the
experimental results, it was found that the proposed algorithm results in a 18%
relative increase in the segmentation rate compared with Chellapilla’s algorithm when
attacking Yahoo CAPTCHAs, and a 35% relative increase in the segmentation rate
when attacking MSN CAPTCHAs. The proposed algorithm makes novel and useful
contributions in the field of CAPTCHA analysis and image processing.

To increase the degree of successful segmentation of MSN and Yahoo
CAPTCHA images, our future work will focus on developing and testing the
following two techniques. Firstly, character location prediction. It is likely that
characters have a predictable distribution. Developing an approach that can reliably
guess the locations of remaining characters by analyzing the locations which are
already known, may allow a useful increase in the segmentation rate. Secondly,
dynamic image opening: different images have different fonts and different clutter
widths. Therefore, using the same number of opening iterations for all of these images
may cause mistakes during image erosion and dilation. A technique to dynamically
change the number of image opening iterations might allow a further useful
improvement in the segmentation rate.

This method described in this paper is specifically intended to address the
problem of attacking CAPTCHAs as they are found in the real world, in the MSN and
Yahoo systems (c. 2008). However, future CAPTCHA systems may generate

24

characters in new ways, perhaps having varying numbers of characters, and
dynamically varying lengths and widths of characters within each CAPTCHA image.
We believe it may be possible to extend our technique to preemptively cope with such
variations, by developing a scheme for horizontal projection per-component, in
addition to vertical projection. The challenge of providing the flexibility to cope with
future CAPTCHA designs is an interesting target for further research. For the time
being, however, this paper’s method represents a novel and useful contribution that
effectively addresses the problem of segmentation for real-world modern CAPTCHA
systems.

25

References
[1] M. Blum, L. A. von Ahn, and J. Langford, The CAPTCHA Project, “Completely

Automatic Public Turing Test to tell Computers and Humans Apart,"
www.captcha.net, Dept. of Computer Science, Carnegie-Mellon Univ., and
personal communications, November, 2000.

[2] G. Mori and J. Malik, “Recognizing Objects in Adversarial Clutter: Breaking a
Visual CAPTCHA,” in Proceedings of the 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 134-141, 2003.

[3] G. Moy, N. Jones, C. Harkless, and R. Potter, "Distortion Estimation Techniques
in Solving Visual CAPTCHAs," in Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 23-
28, 2004.

[4] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, "Computers Beat
Humans at Single Character Recognition in Reading Based Human Interaction
Proofs (HIPs)," in Proceedings of the Third Conference on E-Mail and Anti-
Spam, 2005.

[5] K. Chellapilla and P. Simard, “Using Machine Learning to Break Visual Human
Interaction Proofs (HIPs),” in L. K. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems 17, pp. 265–272. MIT
Press, Cambridge, MA, 2005.

[6] A. L. Coates, H. S. Baird, and R. J. Fateman, "Pessimal Print: A Reverse Turing
Test," in Proceedings of the Sixth International Conference on Document
Analysis and Recognition, pp. 1154-1158, 2001.

[7] M. E. Hoque, D. J. Russomanno, and M. Yeasin “2D Captchas from 3D
Models,” in Proceedings of the IEEE SoutheastCon, pp. 165-170, 2006.

[8] H. S. Baird and J. L. Bentley, “Implicit CAPTCHAs,” in Proceedings of
Document Recognition and Retrieval XII, pp. 191-196, 2005.

[9] M. Shirali-Shahreza and S. Shirali-Shahreza, “Drawing CAPTCHA,” in
Proceedings of the 28th International Conference on Information Technology
Interfaces, pp. 475-480, 2006.

[10] D. Misra and K. Gaj, “Face Recognition CAPTCHAs,” in Proceedings of the
Advanced International Conference on Telecommunications and International
Conference on Internet and Web Applications and Services, pp. 122-127, 2006.

[11] S.Y. Huang, Y.K. Lee, G. Bell, and Z.H. Ou, “A Projection-based Segmentation
Algorithm for Breaking MSN and YAHOO CAPTCHAs", in Proceedings of the
2008 International Conference of Signal and Image Engineering (ICSIE'08),
London, UK. (2008).

[12] J. Yan and A.S.E. Ahmad, "A low-cost attack on a Microsoft CAPTCHA," in

Proceedings of 15th ACM Conference on Computer and Communications

Security, Alexandria, Virginia, USA: ACM, 2008.

